Problems on electrochemistry - Due of submission 6/12/2015 Dr. Hanaa Abulmagd

1- Which of the following represents Redox reaction:

$$C + Cu_2O \rightarrow 2Cu + CO_2$$
 $SO_3 + H_2O \rightarrow H_2SO_4$ $HBr + NaI \rightarrow HI + NaBr$

2- Rearrange the following according their reducing ability H₂, Mn, Cl⁻, Zn

3- Rearrange the following according their oxidizing ability H^+ , Mn^{2+} , Cl_2 , Zn^{+2}

Knowing that the reduction potentials of each one as follow:

 $E^{o}_{Mn} = -1.180 V$, $E^{o}_{Zn} = -0.7628 V$, $E^{o}_{H} = 0$, $E^{o}_{Cl} = 1.3895 V$

4- Can Pb replace Fe^{+2} or Cu^{+2} in their solution? if you know that their reduction potentials are: $E^{o}_{Fe} = -0.44 \text{ V}, \quad E^{o}_{Pb} = -0.126 \text{ V}, \quad E^{o}_{Cu} = 0.34 \text{ V}$

5-
$$\operatorname{Sn} + \operatorname{Pb}^{2+} \longrightarrow \operatorname{Sn}^{2+} + \operatorname{Pb}$$

- Calculate the E_{cell}^{o} of the above cell if you know Standard reduction potentials are: $E_{Sn}^{o} = -0.14 \text{ V}, \quad E_{Pb}^{o} = -0.126 \text{ V}$

- Calculate the E_{cell} at 25 °C and $[Pb^{2+}] = 0.01 \text{ M}$, $[Sn^2] = 0.001 \text{ M}$

- At equilibrium, calculate the equilibrium constant of the above reaction at 25 °C.

6- If the standard cell potential at 298 K is 1.10 V for the following reaction

 $Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$, then what is the change in Gibbs Free Energy?

7- The equilibrium constant for the reaction: $Ni_{(s)} + Hg_2Cl_{2(s)} \rightarrow 2Hg_{(l)} + 2Cl_{(aq)} + Ni^{2+}_{(aq)}$ is 1.8×10^{19} at 298K. What is the value of the standard cell potential E°_{cell} for this reaction?

8- If 612 C of charge is passed through a solution of $Cu(NO_3)_{2(aq)}$, calculate the mass of copper metal deposited. Atomic mass of Cu is 63.0g/mole.